
D03 – Partial Differential Equations

D03EDF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

D03EDF solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic
partial differential equation on a rectangular region. This routine uses a multigrid technique.

2 Specification

SUBROUTINE D03EDF(NGX, NGY, LDA, A, RHS, UB, MAXIT, ACC, US, U,
1 IOUT, NUMIT, IFAIL)
INTEGER NGX, NGY, LDA, MAXIT, IOUT, NUMIT, IFAIL
real A(LDA,7), RHS(LDA), UB(NGX∗NGY), ACC, US(LDA),
1 U(LDA)

3 Description

D03EDF solves, by multigrid iteration, the seven-point scheme

A6
i,jui−1,j+1 + A7

i,jui,j+1

+ A3
i,jui−1,j + A4

i,juij + A5
i,jui+1,j

+ A1
i,jui,j−1 + A2

i,jui+1,j−1 = fij , i = 1, 2, . . . , nx; j = 1, 2, . . . , ny,

which arises from the discretization of an elliptic partial differential equation of the form

α(x, y)Uxx + β(x, y)Uxy + γ(x, y)Uyy + δ(x, y)Ux + ε(x, y)Uy + φ(x, y)U = ψ(x, y)

and its boundary conditions, defined on a rectangular region. This we write in matrix form as

Au = f.

The algorithm is described in separate reports by Wesseling [2], [3] and McCarthy [1].

Systems of linear equations, matching the seven-point stencil defined above, are solved by a multigrid
iteration. An initial estimate of the solution must be provided by the user. A zero guess may be supplied
if no better approximation is available.

A ‘smoother’ based on incomplete Crout decomposition is used to eliminate the high frequency
components of the error. A restriction operator is then used to map the system on to a sequence of
coarser grids. The errors are then smoothed and prolongated (mapped onto successively finer grids).
When the finest cycle is reached, the approximation to the solution is corrected. The cycle is repeated
for MAXIT iterations or until the required accuracy, ACC, is reached.

D03EDF will automatically determine the number l of possible coarse grids, ‘levels’ of the multigrid
scheme, for a particular problem. In other words, D03EDF determines the maximum integer l so that
nx and ny can be expressed in the form

nx = m2l−1 + 1, ny = n2l−1 + 1, with m ≥ 2 and n ≥ 2.

It should be noted that the rate of convergence improves significantly with the number of levels used (see
McCarthy [1]), so that nx and ny should be carefully chosen so that nx − 1 and ny − 1 have factors of
the form 2l, with l as large as possible. For good convergence the integer l should be at least 2.

D03EDF has been found to be robust in application, but being an iterative method the problem of
divergence can arise. For a strictly diagonally dominant matrix A

|A4
ij | >

∑
k �=4

|Ak
ij |, i = 1, 2, . . . , nx; j = 1, 2, . . . , ny

no such problem is foreseen. The diagonal dominance of A is not a necessary condition, but should this
condition be strongly violated then divergence may occur. The quickest test is to try the routine.

[NP3390/19/pdf] D03EDF.1

D03EDF D03 – Partial Differential Equations

4 References

[1] McCarthy G J (1983) Investigation into the multigrid code MGD1 Report AERE–R 10889 Harwell

[2] Wesseling P (1982) MGD1 – A robust and efficient multigrid method Multigrid Methods. Lecture
Notes in Mathematics 960 Springer-Verlag 614–630

[3] Wesseling P (1982) Theoretical aspects of a multigrid method SIAM J. Sci. Statist. Comput. 3
387–407

5 Parameters

1: NGX — INTEGER Input

On entry: the number of interior grid points in the x-direction, nx. NGX − 1 should preferably be
divisible by as high a power of 2 as possible.

Constraint: NGX ≥ 3.

2: NGY — INTEGER Input

On entry: the number of interior grid points in the y-direction, ny. NGY − 1 should preferably be
divisible by as high a power of 2 as possible.

Constraint: NGY ≥ 3.

3: LDA — INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which D03EDF
is called., which must also be a lower bound for the dimensions of the arrays RHS, US and U. It
is always sufficient to set LDA ≥ (4 × (NGX + 1) × (NGY + 1))/3, but slightly smaller values may
be permitted, depending on the values of NGX and NGY. If on entry, LDA is too small, an error
message gives the minimum permitted value. (LDA must be large enough to allow space for the
coarse-grid approximations).

4: A(LDA,7) — real array Input/Output

On entry: A(i + (j − 1) × NGX, k) must be set to Ak
ij , for i = 1,2,...,NGX; j = 1,2,...,NGY and

k = 1,2,...,7.

On exit: A is overwritten.

5: RHS(LDA) — real array Input/Output

On entry: RHS(i+ (j − 1) × NGX) must be set to fij , for i = 1,2,...,NGX; j = 1,2,...,NGY.

On exit: the first NGX×NGY elements are unchanged and the rest of the array is used as workspace.

6: UB(NGX∗NGY) — real array Input/Output

On entry: UB(i + (j − 1) × NGX) must be set to the initial estimate for the solution uij .

On exit: the corresponding component of the residual r = f − Au.

7: MAXIT — INTEGER Input

On entry: the maximum permitted number of multigrid iterations. If MAXIT = 0, no multigrid
iterations are performed, but the coarse-grid approximations and incomplete Crout decompositions
are computed, and may be output if IOUT is set accordingly.

Constraint: MAXIT ≥ 0.

D03EDF.2 [NP3390/19/pdf]

D03 – Partial Differential Equations D03EDF

8: ACC — real Input

On entry: the required tolerance for convergence of the residual 2-norm:

‖r‖2 =

√√√√NGX×NGY∑
k=1

(rk)2

where r = f −Au and u is the computed solution. Note that the norm is not scaled by the number
of equations. The routine will stop after fewer than MAXIT iterations if the residual 2-norm is less
than the specified tolerance. (If MAXIT > 0, at least one iteration is always performed.)

If on entry ACC = 0.0, then the machine precision is used as a default value for the tolerance;
if ACC > 0.0, but ACC is less than the machine precision, then the routine will stop when the
residual 2-norm is less than the machine precision and IFAIL will be set to 4.

Constraint: ACC ≥ 0.0.

9: US(LDA) — real array Output

On exit: the residual 2-norm, stored in element US(1).

10: U(LDA) — real array Output

On exit: the computed solution uij is returned in U(i + (j − 1) × NGX), for i = 1,2,...,NGX;
j = 1,2,...,NGY.

11: IOUT — INTEGER Input

On entry: controls the output of printed information to the advisory message unit as returned by
X04ABF:

IOUT = 0
No output.

IOUT = 1
The solution uij , for i = 1,2,...,NGX; j = 1,2,...,NGY.

IOUT = 2
The residual 2-norm after each iteration, with the reduction factor over the previous iteration.

IOUT = 3
As for IOUT = 1 and IOUT = 2.

IOUT = 4
As for IOUT = 3, plus the final residual (as returned in UB).

IOUT = 5
As for IOUT = 4, plus the initial elements of A and RHS.

IOUT = 6
As for IOUT = 5, plus the Galerkin coarse grid approximations.

IOUT = 7
As for IOUT = 6, plus the incomplete Crout decompositions.

IOUT = 8
As for IOUT = 7, plus the residual after each iteration.

The elements A(p, k), the Galerkin coarse grid approximations and the incomplete Crout
decompositions are output in the format:

Y-index = j

X-index = i A(p, 1) A(p, 2) A(p, 3) A(p, 4) A(p, 5) A(p, 6) A(p, 7)
where p = i + (j − 1) × NGX, i = 1,2,...,NGX and j = 1,2,...,NGY.

The vectors U(p), UB(p), RHS(p) are output in matrix form with NGY rows and NGX columns.
Where NGX > 10, the NGX values for a given j-value are produced in rows of 10. Values of
IOUT > 4 may yield considerable amounts of output.

Constraint: 0 ≤ IOUT ≤ 8.

[NP3390/19/pdf] D03EDF.3

D03EDF D03 – Partial Differential Equations

12: NUMIT — INTEGER Output

On exit: the number of iterations performed.

13: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, −1 or 1. For users not familiar with this parameter (described
in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL = 0 or −1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors detected by the routine:

IFAIL = 1

On entry, NGX < 3,

or NGY < 3,

or LDA is too small,

or ACC < 0.0,

or MAXIT < 0,

or IOUT < 0,

or IOUT > 8.

IFAIL = 2

MAXIT iterations have been performed with the residual 2-norm decreasing at each iteration but
the residual 2-norm has not been reduced to less than the specified tolerance (see ACC). Examine
the progress of the iteration by setting IOUT ≥ 2.

IFAIL = 3

As for IFAIL = 2, except that at one or more iterations the residual 2-norm did not decrease. It
is likely that the method fails to converge for the given matrix A.

IFAIL = 4

On entry, ACC is less than the machine precision. The routine terminated because the residual
norm is less than the machine precision.

7 Accuracy

See ACC (Section 5).

8 Further Comments

The rate of convergence of this routine is strongly dependent upon the number of levels, l, in the multigrid
scheme, and thus the choice of NGX and NGY is very important. The user is advised to experiment with
different values of NGX and NGY to see the effect they have on the rate of convergence; for example,
using a value such as NGX = 65 (= 26 + 1) followed by NGX = 64 (for which l = 1).

D03EDF.4 [NP3390/19/pdf]

D03 – Partial Differential Equations D03EDF

9 Example

The program solves the elliptic partial differential equation

Uxx − αUxy + Uyy = −4, α = 1.7

on the unit square 0 ≤ x, y ≤ 1, with boundary conditions

U = 0 on




x = 0, (0 ≤ y ≤ 1)
y = 0, (0 ≤ x ≤ 1)
y = 1, (0 ≤ x ≤ 1)

U = 1 on x = 1, 0 ≤ y ≤ 1.

For the equation to be elliptic, α must be less than 2.

The equation is discretized on a square grid with mesh spacing h in both directions using the following
approximations:

NW 6 N 7

W 3 0 4 E 5

S 1 SE 2

Figure 1

Uxx � 1
h2

(UE − 2UO + UW)

Uyy � 1
h2

(UN − 2UO + US)

Uxy � 1
2h2

(UN − UNW + UE − 2UO + UW − USE + US).

Thus the following equations are solved:

1
2
αui−1,j+1 + (1 − 1

2
α)ui,j+1

+(1 − 1
2
α)ui+1,j + (−4 + α)uij + (1 − 1

2
α)ui+1,j

+ (1 − 1
2
α)ui,j−1 +

1
2
αui+1,j−1 = −4h2

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* D03EDF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)
real ALPHA
PARAMETER (ALPHA=1.7e0)
INTEGER LEVELS, NGX, NGY, LDA
PARAMETER (LEVELS=3,NGX=2**LEVELS+1,NGY=NGX,LDA=4*(NGX+1)

+ *(NGY+1)/3)
* .. Local Scalars ..

real ACC, HX, HY

[NP3390/19/pdf] D03EDF.5

D03EDF D03 – Partial Differential Equations

INTEGER I, IFAIL, IOUT, IX, IY, J, K, MAXIT, NUMIT
* .. Local Arrays ..

real A(LDA,7), RHS(LDA), U(LDA), UB(NGX*NGY), US(LDA)
* .. External Subroutines ..

EXTERNAL D03EDF, X04ABF
* .. Intrinsic Functions ..

INTRINSIC real
* .. Executable Statements ..

WRITE (NOUT,*) ’D03EDF Example Program Results’
WRITE (NOUT,*)
ACC = 1.0e-4
CALL X04ABF(1,NOUT)
MAXIT = 15

* ** Set IOUT.GE.2 to obtain intermediate output **
IOUT = 0
HX = 1.0e0/real(NGX+1)
HY = 1.0e0/real(NGY+1)
WRITE (NOUT,99999) ’NGX = ’, NGX, ’ NGY = ’, NGY, ’ ACC =’, ACC,

+ ’ MAXIT = ’, MAXIT
* Set up operator, right-hand side and initial guess for
* step-lengths HX and HY

DO 40 J = 1, NGY
DO 20 I = 1, NGX

K = (J-1)*NGX + I
A(K,1) = 1.0e0 - 0.5e0*ALPHA
A(K,2) = 0.5e0*ALPHA
A(K,3) = 1.0e0 - 0.5e0*ALPHA
A(K,4) = -4.0e0 + ALPHA
A(K,5) = 1.0e0 - 0.5e0*ALPHA
A(K,6) = 0.5e0*ALPHA
A(K,7) = 1.0e0 - 0.5e0*ALPHA
RHS(K) = -4.0e0*HX*HY
UB(K) = 0.0e0

20 CONTINUE
40 CONTINUE

* Correction for the boundary conditions
* Horizontal boundaries --

DO 60 I = 2, NGX - 1
* Boundary condition on Y=0 -- U=0

IX = I
A(IX,1) = 0.0e0
A(IX,2) = 0.0e0

* Boundary condition on Y=1 -- U=0
IX = I + (NGY-1)*NGX
A(IX,6) = 0.0e0
A(IX,7) = 0.0e0

60 CONTINUE
* Vertical boundaries --

DO 80 J = 2, NGY - 1
* Boundary condition on X=0 -- U=0

IY = (J-1)*NGX + 1
A(IY,3) = 0.0e0
A(IY,6) = 0.0e0

* Boundary condition on X=1 -- U=1
IY = J*NGX
RHS(IY) = RHS(IY) - A(IY,5) - A(IY,2)
A(IY,2) = 0.0e0
A(IY,5) = 0.0e0

D03EDF.6 [NP3390/19/pdf]

D03 – Partial Differential Equations D03EDF

80 CONTINUE
* Now the four corners --
* Bottom left corner

K = 1
A(K,1) = 0.0e0
A(K,2) = 0.0e0
A(K,3) = 0.0e0
A(K,6) = 0.0e0

* Top left corner
K = 1 + (NGY-1)*NGX
A(K,3) = 0.0e0
A(K,6) = 0.0e0
A(K,7) = 0.0e0

* Bottom right corner
* Use average value at discontinuity (= 0.5)

K = NGX
RHS(K) = RHS(K) - A(K,2)*0.5e0 - A(K,5)
A(K,1) = 0.0e0
A(K,2) = 0.0e0
A(K,5) = 0.0e0

* Top right corner
K = NGX*NGY
RHS(K) = RHS(K) - A(K,2) - A(K,5)
A(K,2) = 0.0e0
A(K,5) = 0.0e0
A(K,6) = 0.0e0
A(K,7) = 0.0e0

* Solve the equations
IFAIL = 0

*
CALL D03EDF(NGX,NGY,LDA,A,RHS,UB,MAXIT,ACC,US,U,IOUT,NUMIT,IFAIL)

*
WRITE (NOUT,*)
WRITE (NOUT,99998) ’Residual norm =’, US(1)
WRITE (NOUT,99997) ’Number of iterations =’, NUMIT
WRITE (NOUT,*)
WRITE (NOUT,*) ’Solution’
WRITE (NOUT,*)
WRITE (NOUT,99996) ’ I/J’, (I,I=1,NGX)
DO 100 J = 1, NGY

WRITE (NOUT,99995) J, (U(I+(J-1)*NGX),I=1,NGX)
100 CONTINUE

STOP
*
99999 FORMAT (1X,A,I3,A,I3,A,1P,e10.2,A,I3)
99998 FORMAT (1X,A,1P,e12.2)
99997 FORMAT (1X,A,I5)
99996 FORMAT (1X,A,10I7,:)
99995 FORMAT (1X,I3,2X,10F7.3,:)

END

9.2 Program Data

None.

[NP3390/19/pdf] D03EDF.7

D03EDF D03 – Partial Differential Equations

9.3 Program Results

D03EDF Example Program Results

NGX = 9 NGY = 9 ACC = 1.00E-04 MAXIT = 15

Residual norm = 1.61E-05
Number of iterations = 4

Solution

I/J 1 2 3 4 5 6 7 8 9
1 0.024 0.047 0.071 0.095 0.120 0.148 0.185 0.261 0.579
2 0.047 0.094 0.142 0.192 0.245 0.310 0.412 0.636 0.913
3 0.071 0.142 0.215 0.292 0.378 0.489 0.663 0.862 0.969
4 0.095 0.191 0.289 0.393 0.511 0.656 0.810 0.915 0.967
5 0.119 0.239 0.361 0.486 0.616 0.741 0.836 0.895 0.939
6 0.143 0.284 0.419 0.543 0.648 0.729 0.786 0.832 0.893
7 0.164 0.315 0.438 0.527 0.593 0.641 0.682 0.734 0.823
8 0.174 0.306 0.378 0.427 0.462 0.492 0.528 0.591 0.717
9 0.155 0.202 0.229 0.248 0.264 0.282 0.313 0.376 0.523

D03EDF.8 (last) [NP3390/19/pdf]

